鋼鐵材料在與有色合金和高分子材料的競爭中繼續(xù)發(fā)揮其價格便宜、工藝成熟的優(yōu)勢,通過高強度化和有效的強化措施可充分發(fā)揮其強度潛力,以致迄今為止仍然是在汽車生產(chǎn)上使用最多的材料。
高強度鋼板
轎車自重的25%在車身,車身材料的輕量化舉足輕重。20世紀90年代,世界范圍內(nèi)的35家主要鋼鐵企業(yè)合作完成了“超輕鋼質(zhì)汽車車身”(ULSAB-Ultra Light Steel Auto Body)課題。該課題的研究成果表明,車身鋼板的90%使用現(xiàn)已大量生產(chǎn)的高強度鋼板(包括高強度、超高強度和夾層減重鋼板),可以在不增加成本的前提下實現(xiàn)車身降重25%(以4門轎車為參照),且靜態(tài)扭轉剛度提高80%,靜態(tài)彎曲剛度提高52%,第一車身結構模量提高58%,滿足全部碰撞法規(guī)要求。當然,這還是一個研究的成果,高強度鋼板在車身上的實際應用還未達到如此高的水平。在普通的IF鋼板的基礎上相繼開發(fā)了高強度IF鋼板和烘烤硬化IF鋼板,在保持高成型性的同時提高了強度和抗凹陷性,為車身鋼板的減薄和實現(xiàn)輕量化創(chuàng)造了條件。
加入Ti、Nb和V等元素的析出強化鋼板拉伸強度在500~750MPa,可用于車輪和其它底盤零件。
近來開發(fā)的多相鋼有相當大的應用潛力。其中鐵素體-貝氏體鋼強度級別為500MPa,雙相(DP)鋼和相變誘發(fā)塑性(TRIP)鋼強度級別為600~800MPa,復相(CP)鋼強度級別在1000MPa或更高。這些鋼的成型性能也很好。
激光拼焊毛坯(Tailored Blank)是新近開發(fā)并應用的鋼板輕量化技術。在前述ULSAB車身有18個零件采用了此技術。
結構鋼
鋼鐵材料的用量雖逐年減少,但高強度鋼的用量卻有相當大的增加。高強度結構鋼使零件設計得更緊湊和小型化,有助于汽車的輕量化。
(1) 彈簧
懸架彈簧輕量化的最有效方法是提高彈簧的設計許用應力。但是為了實現(xiàn)這種高應力下的輕量化,材料的高強度化是不可少的。在傳統(tǒng)的Si-Mn彈簧鋼的基礎上通過降低C并添加Ni、Cr、Mo和V等合金元素,開發(fā)出強度和韌性都很高的鋼種,設計許用應力可達1270MPa,這種彈簧鋼的應用可實現(xiàn)40%的輕量化。在傳統(tǒng)的Cr-V系彈簧鋼中添加Nb可提高鋼的抗延遲斷裂性能,結合改進的奧氏體軋制成型,可使鋼的拉伸強度達到1800MPa的水平。
氣門彈簧用的Si-Cr鋼中添加V,通過晶粒細化確保韌性,由增C提高強度。這樣改進后,彈簧的高周疲勞強度約提高8%,可實現(xiàn)15%的輕量化。通過有限元分析,螺旋彈簧內(nèi)、外側應力均勻分布的檸檬形斷面彈簧鋼絲得以開發(fā),使彈簧實現(xiàn)7%的輕量化。
提高彈簧疲勞強度的有效途徑是對彈簧進行噴丸和氮化處理。彈簧的噴丸,除了傳統(tǒng)的應力噴丸之外又發(fā)展了雙級噴丸。噴丸和氮化也可以復合使用。
(2)齒輪
汽車發(fā)動機有高功率化的趨勢,而傳動器有緊湊小型化的傾向。這勢必加大傳動齒輪的負荷,從而對齒輪鋼的彎曲疲勞強度和接觸疲勞強度的要求也相應提高。
提高鋼中Ni、Cr、Mo等合金元素的含量可以提高齒輪鋼的淬透性和強度,但單純靠合金元素來強化齒輪鋼會使鋼的切削性能變壞、熱處理工藝復雜,原材料成本和生產(chǎn)成本都會大幅度提高。齒輪滲碳時,為了防止或減少異常層的出現(xiàn),降低鋼中的Si和P含量,Mo量增加到0.35%~0.45%,并采用經(jīng)改良的碳氮共滲工藝。改進的鋼種可使齒輪實物的沖擊壽命提高3~5倍,若在上述降低表面異常層鋼種加上強力噴丸,可使齒輪疲勞極限提高20%~30%。
齒輪鋼中的非金屬夾雜物是疲勞裂紋的起點,會降低強力噴丸的強化效果,為此開發(fā)了高純凈度齒輪鋼。例如對SCM420HZ鋼,將氧濃度降到9ppm以下、磷濃度降到90ppm以下時,與前述降低表面異常層的低Si高Mo鋼相比,齒輪齒根彎曲疲勞壽命提高10%~17%,接觸疲勞壽命提高25%。
高強度鑄鐵
鑄鐵由于其性能和成本方面的諸多優(yōu)點,在汽車材料中仍然占有一席之地。鑄鐵材料的進步更使之在汽車上的應用出現(xiàn)了新亮點。
(1) 球墨鑄鐵
鐵素體球墨鑄鐵拉伸強度可達500MPa,韌性也較高,因此多用于底盤零件,有的車型甚至用作轉向節(jié)等保安件。
珠光體球墨鑄鐵強度更高,在一些零件上可代替鍛鋼件。帶平衡塊的4缸轎車發(fā)動機曲軸采用球墨鑄鐵加圓角滾壓強化,已成為美、德、法等國汽車廠家的標準工藝。因球鐵的密度比鋼約小10%,所以以球鐵代鋼可以產(chǎn)生一定的輕量化效果。
奧貝球鐵(ADI-Austempered Ductile Iron)具有很高的強度和韌塑性,按美國和德國標準制造的奧貝球鐵牌號,其最高強度級別達到1400MPa,超過了調(diào)質(zhì)鋼和滲碳鋼的強度水平。可以用ADI代替鋼制造汽車輪轂、全輪驅動雙聯(lián)桿、轉向節(jié)臂、發(fā)動機正時齒輪、曲軸和連桿等。經(jīng)實物測量,代替鍛鋼制造曲軸可以降重10%,代替鋁合金制造載貨車輪轂每只可降重0.5kg。
(2) 蠕墨鑄鐵
蠕墨鑄鐵(Vermicular graphite cast iron)又稱緊密石墨鑄鐵(Compacted graphite cast iron),其機械-物理性能和鑄造工藝性能介于灰鑄鐵和球墨鑄鐵之間,很適合制造強度要求較高和要承受熱循環(huán)負荷的零件,如氣缸體、氣缸蓋、排氣歧管和制動鼓等。
蠕墨鑄鐵的發(fā)現(xiàn)與球鐵同時,但由于蠕化工藝控制難度較大而應用受到限制,Sinter Cast工藝控制系統(tǒng)為蠕鐵的應用開辟了廣闊的前景。蠕鐵氣缸體比灰鑄鐵氣缸體降重16%,而結構剛度則提高12%~25%。采用蠕鐵制造氣缸體還可改善摩擦磨損性能、降低振動和噪音、改善排放。
粉末冶金材料
粉末冶金材料成分自由度大和粉末燒結工藝的近凈形特點,其在汽車上的應用有增加的趨勢,特別是鐵基粉末燒結材料在要求較高強度的復雜結構件上的應用越來越多。
組裝式粉末冶金空心凸輪軸是近年來的新產(chǎn)品,它是由鐵基粉末冶金材料制成凸輪,然后用燒結或機械的辦法固定在空心鋼管上組成。與常規(guī)的鍛鋼件或鑄鐵件相比,可降重25%~30%。此種凸輪軸已在高速汽油機上使用,隨?柴油機凸輪軸服役工況的日益苛刻,粉末冶金空心凸輪軸有推向柴油機的趨勢。
粉末鍛造連桿已經(jīng)成功應用,近年開發(fā)的一次燒結粉末冶金連桿技術的生產(chǎn)成本較低,可實現(xiàn)11%的輕量化。